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Abstract

The analysis of eye splices used in synthetic rope is considered by
categorising splice geometries and then developing the modelling for each type.
The three splices considered are those commonly used in wire ropes and
applied to six round one aramid ropes; the splices are the long or transmission
splice, the Admiralty splice and the Liverpool splice. The geometry of each type
is analysed and then applied to determine the load capability for each type. The
internal friction and contact forces are also discussed.

Introduction

Large synthetic ropes are being widely exploited in many long time structural
environments; to be employed, ropes must be terminated and this can be
achieved by a variety of mechanisms; their ends can be cast into in epoxy fittings
or terminations, they can be gripped or they can be spliced either to another
rope or to themselves forming an eye. While some analysis has been conducted
on the strength and life of these ropes, little analysis has been done on the
splicing of these ropes. This paper describes three splice geometries and
introduces the analysis associated with each.

Modern synthetic ropes are varied in construction and in the selection of
constituent fibre materials; the assembly geometries consist of the oldest
geometry namely twisting of strands around a core axis, of braiding and
plaiting of strands, and of layering of groups of strands. The strands can be
assumed to be small ropes or subropes, formed by twisting, braiding or plaiting
of yarns; also these yarns are so formed from textile or rope yarns that in turn



are assembled from the smallest fibre groups. Thus the development of the rope
from the basic component is achieved through a hierarchical tree, in which the
geometry of construction or assembly is the link between consecutive levels.

The material components used in modern nonmetal ropes are the polymer
fibres, as used in a range of textile materials; these material fibres have a range
of properties that can be exploited in rope construction, namely strength,
stiffness, creep and relaxation endurance, fatigue life, shock and impact
resistance, and surface friction for internal energy absorption, fibre abrasion and
rope integrity.

Much has been done in recent years on the analysis of rope performance,
fatigue within the body of the rope, and internal heating of cyclically loaded
ropes. However, the analysis of termination of such ropes by splicing has not
been equally developed.

In this paper the analysis of synthetic fibre ropes is briefly reviewed and the
internal forces (inter component contact and friction) are discussed. The
candidate splices are then described, and the associated analyses are developed.
The effects of friction within the splice is considered as indeed without friction
the splice would disintegrate; adversely friction is one of the causes of internal
heating and abrasion, thus limiting the rope/splice life. The splices considered
are:

The long (transmission) splice for twisted structures is achieved by
stagger cutting each strand in the standing end and laying in its path a strand
from the joining splice end. This is the simplest splice geometry and the analysis
for the splice integrity requires an estimate of the contact friction.

The Admiralty splice uses a braid geometry by weaving the strands from
the standing end with those of the splice; contact is enforced at the crossover
points and friction again ensures that the splice does not disintegrate.

Finally the Liverpool splice is achieved by twisting each strand in the
standing end with a corresponding strand of the splice; there is a load
transference strand to strand along the transition and again the contact forces
ensure that there is no splice disintegration.

Review of the Analysis of Synthetic Ropes
The analysis of the static behaviour of synthetic ropes has been achieved

using a hierarchical approach[12-16] ; obviously there are many other references
that relate to the modelling of rope behaviour but those quoted here are



pertinent to the following development. The hierarchical structure is initiated by
firstly considering a helical structure in which a single component is wound to
form the helix. The component is assumed to have tensile and torsional stiffness
where the developed component tension and torsion are each functions of both
the component extension and the twist. These stiffnesses are then used to find
the tensile and torsional stiffness for the structure and this structure then
becomes the component in the next hierarchical level. For definition purposes,
the hierarchical levels considered here are baseyarns, ropeyarns, strands and
ropes although there are many others, for example subropes, textile yarns and
filaments. In the following, the text will refer to baseyarns within a ropeyarn,
ropeyarns within a strand or strands within a rope; Figure 1 illustrates this
hierarchical structure.

For many ropeyarns within a strand, each is assumed to behave identically to
the others and the total effect is simply an accumulation of the identical
components. There are some constructions or assemblies where this is not the
case and these will be discussed later.

The principle of virtual work has been employed to find the total rope
behaviour; in essence it is an energy balance principle where the balance is
applied to individual deformations. The direction cosine is the essential link
between the levels in the hierarchical tree; the direction cosine relates the
direction of the component axis to the direction of the structure axis. It thus
connects the structure strain (and twist) to the component strain (and twist) and
it also resolves the resulting component force and torque along the structure
axis. Thus the emphasis in this paper will be on determining the direction
cosines of the components in the splices.

Friction in Synthetic Ropes

Friction in ropes arises from relative slips between components within the
rope structure and where there is a contact or bearing force normal to the slip;
two categories of friction exist, namely inter, where relative deformation occurs
between two contiguous components and intra where relative deformation occurs
within a component.
The following slip modes are identified and illustrated in Figure 2:-

a.Mode 1, slip between contiguous yarns and strands in the same layer due
to rope stretch and to rope twist. This acts axially along the components, but in
opposite directions on opposite contact faces. On the component it will produce
a shear or couple whereas on the structure it will oppose the extensional motion.



b.Mode 2, slip in rotation of a strand/yarn in a rope/strand; the torsion
developed within the strand is resisted by the friction torque at the end of the
strand. This action opposes the unwinding of a twisted strand from its end. The
degree of slip is length dependent since the friction(torque) developed is
proportional to the strand length.

c.Mode 3, scissoring where the relative angle between crossing strands
changes, due to rope stretch and is most applicable in braided/plaited ropes,
rope flexure and in splices.

d.Mode 4, sawing due to the action of one yarn over another as they slide
due to rope stretch. This is not significant in geometry preserving deformations
but since it results from flexure and since geometry preserving deformations are
accompanied by flexure at the component level, it is present.

e.Mode 5, dilation, occurring as a result of change in area of a strand as it
Is stretched in the helix and bears against contiguous strands.

f.Mode 6, distortion, due to a change in strand shape as it is squashed
towards the final wedge geometry.

These deformation modes can be classified into Inter modes (1 to 4) since
these act between components and Intra (modes 5 and 6) since they act within
a component.

Modes 1 is most dominant for twisted structured rope loading and for the
estimation of hysteresis losses induced; mode 2 acts at a rope termination, break
or join, or in the development of a splice. Mode 3 is probably the next most
important but only for braided/plaited ropes and mode 4 is very important in
rope flexure. None of these modes can account for the set induced in ropes due
to repeated loading because when the load is removed, the contact forces are
zeroed and the rope returns to its original length. The modes 5 and 6 could
account in part for this set since dilation and distortion could result from near
zero loads. Mode 6, distortion is probably most significant since area changes
are relatively smaller than those incurred in changing from cylinder shapes to
wedges.

Contact force
The friction force is given by the friction coefficient x contact force, and this

latter force (expressed in N/m) will depend upon direction of the contact action;
for circumferential contact, between components in the same layer,
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where p is the pitch (turns/m) of the component about the structure , r is the
helix radius, t is the increased twist of the structure, € is the extension of the
structure, and n is the number of components in a layer.

For contact between components in contiguous layers, the contact force is
radial and there is no slip, and is given by the following,

Contact Foree = X Camponent Tension
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Splice Types

Splices are used for joining two ropes and for closing the eye of a loop; both
configurations are similar the eye being ‘half’ the join. Three splice
configurations are considered here, and are illustrated on a six round one rope,
that is the rope has a core subrope component, and around this are wound Six
subropes with a specific pitch. The first splice is the long splice, the second and
most significant is the Admiralty splice, sometimes called the locktuck splice and
the third is the Liverpool splice. These splices will be considered separately as
their actions are quite different. However, all use an existing rope, since both
in real life and in modelling the splice can only be achieved on a rope structure;
consequently the analysis and modelling will assume the existence of a rope
model and all its hierarchical components.

During splicing, whether it be a rope join or an eye formation, the first level
of hierarchical structure is reformed into the splice using the second and other
levels. The modelling thus assumes the subrope/strand/yarn components and
re-establishes the rope (now called splice) using these levels. The assumption
that has been dominant and that must still be employed is that the structure is
geometrically preserving at least locally. It is recognised that whereas in a rope
it can be assumed that all stations are repeated identically along the rope
although they may be subject to rigid body rotation, in a splice there are different
geometries along the development of the splice. However, locally, that is at any
axial station in the splice, the deformation is assumed to be geometry preserving,
so that points in contact remain in contact. This is quite reasonable in the



middle splice but at the end of the splice there will be slip.

The splice
The splicing of these specific ropes is described in two parts; first the core

Is considered, this being common for the three splices considered and second the
detail for splicing the outer subropes by the long (transmission), the Admiralty
and the Liverpool splices. In order to describe the geometry of the splices, the
following notation is used. The components from the rope are labelled R and
those from the splice are S.

The core

Since the rope being considered here is a six round one structure the first
point to be considered is the core subrope; for this work the core is assumed to
be laid along itself as shown in Figure 3 and the detail is shown in Figure 4.
Although there are migrating strands that entrap the incoming S subrope (from
the splice) the main mechanism for keeping the two subropes together is friction.
The important contribution to this is the contact force initiated by the entrapping
strands from the rope R subrope and reinforced by the action of the outer layer
on the core. A simplified but adequate theory for this friction splice is developed
in the following section on the long splice.

At the crotch of the splice, both subropes are subject to the same load; as the
station is advanced to the end of the splice zone, the splice S subrope sheds its
load to the rope subrope and at the end of the splice, it carries zero load.
Mirroring the structure about the splice crotch generates the splice for joining
similar ropes; this is repeated for all the described splices, the eye splice being
'half' the splice for joining two ropes.

The Long (transmission) splice

The subropes in the outer layer from the splice are stagger laid in the spaces
that were occupied by those from the rope, Figure 5; each splice S subrope
starts at the splice with its full load and sheds this as the station moves to the
end of the splice subrope; the subrope is nominally held in place by a fastening
ring or collar and is subject to a circumferential contact force from its neighbours.
The contact force is responsible for the transmission by friction of subrope axial
load.

At the station when the splice S subrope is introduced to the rope, the rope
load is shared by n-1 rope R subropes; to sustain this (maximum) rope/splice



load, the splice S subrope must achieve maximum load before the next subrope
Is introduced. The advantage of this splice is that there is no size increase of the
splice over the rope size, enabling the splice to be used over pulleys.

Analysis of the long splice
In this splice the S subropes are laid in the place of other R subropes Figure

6. The Ssubrope that is inserted has zero tension at its end but this is increased
by friction contact with the neighbouring subropes until it has the same nominal
load as the other subropes at the splice crotch.

The simplest configuration considered is the lap, where the S subrope is in
edge contact with both neighbouring R subropes. Define the origin as that
position on the S subrope at which it be fully loaded; let x, be the distance from
this station along the R subrope when not loaded and x, be the corresponding
distance for the S subrope. The load carried by the S subrope when fully loaded
is P,, the same load as carried by each R subrope; at the splice the tension in
the R subropes has increased to P. The contact force/length is p and the friction
coefficientis u. The stretch of the subropes under load is u(x). The strain in the
components is €, and the stress (based on area) is o. Then it follows that
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The end of the S subropes are stress free and the R subropes carry full load
P; the distance L along the S subrope end to the fully shared station where the
S subrope carries the same as the contacting R subropes is x,+u,(x,) along the
R subrope and x,+u,(x,) along the S subrope.
It thus follows that

P

PD + uzxz

and 0

P, - 2u b, %,

for the R and S subropes respectively and where the average contact forces/unit
length are defined,
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The lengths x, and x, that are required for the full load P, to be developed in
the S subrope are
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Xp Py~ u
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The distance X, thus defines the minimum length required for each S subrope to
be integrated in the splice and the total minimum splice length would be the
accumulation of this value for each S subrope. The maximum splice load is thus
defined by the number of active R subropes (which is one less than the total R
subropes) times the maximum working subrope load and the maximum splice
efficiency for the n outer subropes is thus 1-1/n.

In a 6 round 1 rope, a contact force of 10kN/m, a subrope load of 30kN
and a friction coefficient p =0.5, the minimum x, for load development is 3m;
since there are six outer subropes to be spliced in the total length for complete
load development would be about 18m. In order to reduce this length the
contact force can be increased by substantive binding, and/or the friction
coefficient increased by surface treatment. It is well known that this type of splice
whilst geometrically optimum, with no accompanying increase in diameter, is
inefficient in the load/strength sense, typically quoted as 85 to 90% or less.



This is because the distance required for the subrope to reach full load is large,
and depends on the friction coefficient and the tightness of the twist (pitch).

Various references give rules for the splice length for the long splice; these
are summarised

Reference Rope Splice length
type/dimension

Air Cadets of Canada, (1941) | d diameter 7nd

Davis, P. and Van der Water, 13mm diameter 1.5m

M. (1946)

Day, C. (1953) 20 turns

Cordage Group, (1977) synthetic rope 35-40 turns
20mm diameter 5m
50mm diameter 13m

Klust, G. (1983) d diameter 50d

Jarman, C. (1984) 16 turns

Because of the loss in load capacity in using a long splice and of the splice
length required, the Admiralty or Liverpool splices are preferred.

The Admiralty Splice

The geometry of the Admiralty splice is shown in Figure 7, and in detail in
Figure 8; the rope is at the bottom and the splice is evolved by progressing up
the figure. Shown shaded at the bottom is a R subrope and this is twisted in the
clockwise (Z) sense about the axis of the rope and progressing into the splice;
as it encounters the splice S subropes, it is woven over and under these in
succession developing a braided structure, in this case a twelve component braid.
The S subropes come from the top in a anticlockwise (S) sense and a typical
component is shown shaded.

Also indicated in this figure is the tapering of these S subropes as they
progress to the rope end of the splice; this is a common practice as near the start
of the splice they have not acquired their full load and consequently they do not
need their full size. It is also a geometrical sensible design as it allows the rope



size to grow gradually to the full splice size, which now contains twice the
components initially in the rope. The encounter of a R subrope with the S
subropes is called a tuck, and the usual number of tucks in the Admiralty splice
Is about 4-5 for each R subrope.

The geometry developed in the Admiralty splice (locktuck) transforms a
twisted (rope) structure into a braided structure. In the zone where the subropes
enter the splice, those leaving the rope carry 1/n (n=6 for six round one) of the
total rope load whereas those from the crotch are unloaded. However they
disturb significantly the rope geometry. Moving towards the splice those
subropes from the rope shed some of their load to those from the splice; the
transference is not subrope to subrope but rope to splice since each subrope
from the splice meets through the braid many of those from the rope. When the
load transference is complete in the zone of the splice, each subrope contributes
equally (1/2n) to the rope/splice load and at this point it is a conventional braid
structure. Friction due to strands passing over and under each other is the main
mechanism of load transference (mode 4,sawing). There is scissoring (mode
3) but this results in fatigue and not load transference. Since the contacts are
discrete, the rate of load transference is the result of the contact force at each
contact and the number of these contacts.

The path geometry is shown in Figure 9 and shows the R subropes moving
in a clockwise direction around the rope/splice core and the S subropes
(shaded) moving in an anticlockwise direction as the station moves from the
rope into the splice. For all stations along the splice it is assumed that the
geometry is the same, although the effect of tapering the S subropes could be
included.

Analysis of the Admiralty Splice
If r, and r,, are the minimum and maximum radius of the subrope as it
moves around the splice axis, the mean radius r,, and radial travel Ar are given

r.m: (rnin+ r:nx) /2

)

and Ar= [rm— ¥oin

These two quantities cannot be specified yet but will be determined from the
other geometrical quantities including the splice pitch L, and number of subropes
in the rope. The path can be estimated using the following assumed equation.
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where r is the radial position of the subrope and y is its angular position and n
Is the number of rope subropes. The subropes coming from the eye move in the
opposite direction and out of phase with these. The rate of change of angular
position with the axial station (dyi/dz) cannot be assumed constant here,
whereas in the rope it has been justifiably assumed constant.

The direction cosine assumption

Referring to Figure 8 at the crotch, and consider an axial load on the
structure. For an established splice, at any station all the subropes from the rope
and eye are at the same (+) angle to the axis, those from the eye at positive
angle and those from the rope at the same but negative angle. Thus in the
established part of the splice they all equally contribute to the splice load. Now
consider a neighbouring station; the splice load is the same and again the
subropes contribute to the same load. Since in the developed region the subrope
load does not vary and since then the component of subrope load along the
splice axis must be the same, then the angle made by any strand with the splice
axis must be constant. This angle, the direction cosine of the subrope is thus
constant throughout the established splice. If s is the distance along a subrope
and z is the distance along the splice, then the direction cosine is

and

or
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Since ds/dz is constant, then
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At this point r,, and Ar and hence C are unknown; if the direction cosine were
known then from the packing of the subrope the helix radius of the subrope at
various points could be determined. The direction cosine, cos6 is given from
above

cos® =

3k

and must be determined from iteration; the procedure first assumes a direction
cosine or an average direction which yields the maximum and minimum radial
position (r,. and r,,) of the subropes; this then enables the calculation of the
constant C and this gives an estimate of ds/dz, an improved value for the
direction cosine. The estimation of the subrope radial positions and the
direction cosines depends upon the type of assembly; assumptions relating to the
structure of the component subropes arising from the softness and hardness of
the subropes assumptions result in different assembly algorithms; in each case
the maximum and minimum radial points lead to the mean radius r,, and the
radial travel Ar.



The Liverpool Splice

The geometry of the Liverpool splice is shown in Figure 10, and in detail in
Figure 11; the rope is at the bottom and the splice is evolved by progressing up
the figure. Shown shaded from the bottom is a R subrope and this is twisted in
the clockwise (Z) sense about the axis of the rope and progressing into the
splice. As it encounters the splice S subropes, it is twisted against it’s own S
subrope, in the S direction to form a two component twisted ‘strand’ so that the
twist of the R-S subrope assembly is in the opposite direction to the direction
that the ‘strand’ twists about the rope/splice core. Again it is usual to taper the
S subropes to minimum size at the rope end of the splice.

The path geometry is shown in Figure 12; here a pair of S and R subropes
are shown moving as a unit in the clockwise direction around the rope/splice
core. However within this migration the ‘Strand’ is seen to rotate in the
anticlockwise direction. Within a hierarchical scheme, the subropes are the
second level of the rope hierarchy; in the Liverpool splice they are the third level,
the second level being the twisted two strand assembly, and this assembly is
different at various stations. Figure 13 shows this intermediate hierarchical
structure that lies between the splice and subrope.

The Liverpool splice implies a load transference subrope to subrope. It is not
a simple twisted structure; the subrope leaving the uniform part of the rope will
carry 1/n of the rope load, where n is the number of subropes. At this point it
meets the subrope from the splice and since this splice subrope is essentially
under zero load, the rope subrope will follow a simple helix and the splice
subrope will follow a double helix path. Towards the splice the rope subrope will
shed load to the splice subrope, and since the splice subrope is picking up load
the its path will no longer be the double helix and the rope subrope will develop
into a secondary helix. At some point in the vicinity of the splice both subropes
contribute equally and here the two subropes form a two component twisted
‘strand’. Load transference is by friction (mode 1) between the two strands.

Analysis of the Liverpool Splice

The detail of the construction of the R-S ‘strand’ is shown in Figure 13; at
the crotch both components are equally loaded and at symmetric positions from
the ‘strand’ axis. Moving away from the crotch and towards the rope, the R
subrope becomes more loaded and the S subrope sheds load the R subrope
moves towards the R-S *strand’ axis and the S subrope moves away; thus the R
subrope spirals in to the ‘strand’ core and the S subrope spirals out.



At any pointbetween the eye and rope in this intermediate structure, the path
can be determined by ensuring contact between the rope and S subropes. The
helix radius of the S and rope subropes is given as follows

» = d sin.z(}qlﬁ E)

£ 4
and r_ = d cosz(}qu-r %)

so that r.+r,.=d;
a) at y=0, r,=r,=d/2,
b) increasing y increases r, and decreases r,, and
¢) when ¢ = w/(41), r,=d and r,=0.

This is assumed kinematics, where O<<Ay<m/4 and A is given by the pitch
of the lock twist; if the pitch of the S subrope wound around the R subrope is p
tpm, and L is the length of the lock twist, then

n 1
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Again the direction cosine is
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s
where {r is measured from the crotch station.
This gives the direction cosines for the S and rope subropes as a function of the
station along thus two component twisted structure,
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for the S subropes coming from the crotch and
1 ds

c:ose_Ie dz

= {1+ (2npd cosAy) 2[4AZ+ (1- 4A2) cos?AY]

for those from the rope; y is measured from the eye station, and is in the range



n/4<Ay<m/2. This gives the direction cosine of the two tuck subropes and
from these the strains can be determined, then the stress or subrope loads and
ultimately the load of the double subrope.

Splice Results

The results shown following are superficial in that they only illustrate the
operation of the above theory; they are only shown for the Admiralty splice
applied to a six round one Kevlar rope, nominal diameter 25mm, breaking load
493kN at 0.03 breaking strain. In the first case the splice size and efficiency
(splice breaking load/rope breaking load) for various splice geometries (packing
factor and pitch). The table shows the best efficiency when the pitch (turns/m)
Is low and lowest for a high pitch; the splice diameter also is largest for a high
pitch, and in general a large splice diameter will accompany an inefficient splice.

Pitch | Packing Splice Peak Strain efficiency(%)
ratio diameter load
(mm) (kN)
1 1 33.269 475 0.028 96.3
2 1 33.393 469 0.028 95.1
3 1 33.602 460 0.028 93.3
4 1 33.900 447 0.028 90.7
3 0.8 37.231 456 0.028 92.5
3 0.6 42.664 450 0.028 91.3

Friction in splices

In the long splice, Mode 1 friction acts and is indeed the mechanism for
sustaining the splice integrity. In the Admiralty splice the main friction mode is
scissoring, Mode 3; to evaluate this, the change in braid angle is estimated and
together with the contact pressure it is assumed that the scissor torque = friction
coefficient x contact pressure. For the Liverpool splice, the friction modes 1 will
be active between the twisted structures, this being the axial slip modes. Mode
3 (scissoring) also acts within the two component ‘strand’ as the two touching
components change their intact angle. Mode 2 friction acts at the end of the S



subropes in all these splices.

The following table shows the effect of friction when the rope is cyclically
strained (0.005 to 0.015); it can be seen that the effect of friction on peak load
Is insignificant but it is important in the work done over the cycle, this work
resulting in heating of the splice and local abrasion and wear.

Friction modes location Peak | Contact | Work
coefficient Load Force Done
(kN) (kN) (I/m)
0.5 local rope end 221 0.77 0.3
1.0 local rope end 222 0.77 12.9
0.5 local crotch 401 0.77 0.6
1.0 local crotch 403 0.77 22.8
0.1 global rope end 222 0.77 12.4
0.1 global crotch 403 0.77 21.8
1.0 global rope end 231 0.80 123.7

The local mode (of friction) is scissoring only in the splice between
contacting subropes, Mode 3, whereas global modes also account for friction
between ropeyarns and textile yarns, Mode 1.

Conclusion

The mechanics of three splices are considered and the associated geometries
for the interfacing subrope components are developed. The consequence of
friction and the various modes in which it acts is discussed. Some results are
shown, the scope of these being curtailed since they are more system specific
rather than mechanically important. The accuracy in modelling rope behaviour for
load extension is very high for well defined constructions and uniformly selected
components. The effect of friction is speculative since the friction theory for
advancing contact of contiguous yarn or strand components is not developed; the
friction coefficient, assuming Coulomb friction has to be measured for all
components and modes within a rope structure. The best that can be done is to
establish a qualitative effect and to measure the consequence by the energy loss
in a load cycle.
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